Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective

نویسندگان

  • Manuel Ceballos
  • Juan Núñez
  • Ángel F. Tenorio
چکیده

In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra hn, of n×n upper-triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of hn besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of hn and, hence, its maximal abelian dimension. The order n of the matrices hn is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices

This paper deals with the computation of abelian subalgebras of the solvable Lie algebra hn, of n × n upper-triangular matrices. Firstly, we construct an algorithm to find abelian Lie subalgebras in a given Lie algebra hn. This algorithm allows us to compute an abelian subalgebra up to a certain dimension. Such a dimension is proved to be equal to the maximum for abelian subalgebras of hn.

متن کامل

Triangular Algebras and Ideals of Nest Algebras

Let %? be a separable Hubert space and !T c 3§(J%f) be an algebra of bounded operators. Say F is triangular if ^ n ^ * is a maximal abelian self-adjoint subalgebra (m.a.s.a.) of 3B{%?) and call this m.a.s.a. the diagonal of J7". A triangular algebra is maximal triangular if it is not properly contained in any triangular algebra. Triangular algebras of operators have been studied for 30 years no...

متن کامل

Quasitriangular Structures on Cocommutative Hopf Algebras

The article is devoted to the describtion of quasitriangular structures (universal R-matrices) on cocommutative Hopf algebras. It is known that such structures are concentrated on finite dimensional Hopf subalgebras. In particular, quasitriangular structure on group algebra is defined by the pairs of normal inclusions of an finite abelian group and by invariant bimultiplicative form on it. The ...

متن کامل

ON SUBALGEBRAS OF n× n MATRICES NOT SATISFYING IDENTITIES OF DEGREE 2n− 2

The Amitsur-Levitzki theorem asserts that Mn(F ) satisfies a polynomial identity of degree 2n. (Here, F is a field and Mn(F ) is the algebra of n × n matrices over F ). It is easy to give examples of subalgebras of Mn(F ) that do satisfy an identity of lower degree and subalgebras of Mn(F ) that satisfy no polynomial identity of degree ≤ 2n − 2. In this paper we prove that the subalgebras of n ...

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016